Sdpa Project : Solving Large-scale Semidefinite Programs
نویسندگان
چکیده
The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial optimization, control and systems theory, robust optimization and quantum chemistry can be modeled or approximated by using SDPs. (iii) Several software packages for solving SDPs and related problems (ex. the Second-Order Cone Program : SOCP) are available on the Internet. In 1995, we started the SDPA Project aimed for solving large-scale SDPs with numerical stability and accuracy. The SDPA (SemiDefinite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form SDP and its dual. We have also developed some variants of the SDPA to handle SDPs with various features. The SDPARA is a parallel version of the SDPA on multiple processors and distributed memory, which replaces two major bottleneck components of the SDPA by their parallel implementation using MPI and ScaLAPACK. The SDPARA on parallel computer has attractive features; it can load a large-scale SDP into the distributed memory and solve it in a reasonable time. In this paper, we show through some numerical experiments that the SDPARA attains high performance. The SDPARA-C is an integration of two software SDPARA and SDPA-C which is a primal-dual interior-point method using the positive definite matrix completion technique. The SDPARA-C requires a small amount of memory when we solve sparse SDPs with a largescale matrix variable and/or a large number of equality constraints. The paper also explains a grid portal system for solving SDPs, which we call the SDPA Online Solver. In this paper, we review the major achievements of the SDPA Project on solving large-scale SDPs. This paper provides an introductory and comprehensive materials for researchers who are interested in practical computational aspects of the SDPs.
منابع مشابه
A high-performance software package for semidefinite programs: SDPA 7
The SDPA (SemiDefinite Programming Algorithm) Project launched in 1995 has been known to provide high-performance packages for solving large-scale Semidefinite Programs (SDPs). SDPA Ver. 6 solves efficiently large-scale dense SDPs, however, it required much computation time compared with other software packages, especially when the Schur complement matrix is sparse. SDPA Ver. 7 is now completel...
متن کاملSDPARA: SemiDefinite Programming Algorithm paRAllel version
The SDPA (SemiDefinite Programming Algorithm) is known as efficient computer software based on primal-dual interior-point method for solving SDPs (Semidefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation of the so-called Schur complement ...
متن کاملImplementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0)
The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs (SemiDefinite Programs). It is written in C++ with the help of LAPACK for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance for large scale problems through numerical experiment an...
متن کاملA parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion
A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SD...
متن کاملNCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials
NCSOStools is a Matlab toolbox for • symbolic computation with polynomials in noncommuting variables; • constructing and solving sum of hermitian squares (with commutators) programs for polynomials in noncommuting variables. It can be used in combination with semidefinite programming software, such as SeDuMi, SDPA or SDPT3 to solve these constructed programs. This paper provides an overview of ...
متن کامل